

Module Title:		Applied Engineering			Level: 5			Crec Valu		20	
Module code:		ENG545	Is this a new module?	No			Code of module being replaced:				
Cost Centre: GAME			JACS3 code:			H300					
Trimester(s) in which to be offered:1, 2 & 3			1, 2 & 3	With effect from:Septemb			ember	r 16			
School: Applied Science, Computing & Engineering				Module Bobby Manes		anesh)				
Scheduled learning and teaching hours										60 hrs	
Guided independent study										140 hrs	
Placement				0 hrs							
Module duration (total hours)											200 hrs
Program	Programme(s) in which to be offered Core Option					Option					
FdEng Industrial Engineering											\checkmark
Pre-requisites None											
Derogatio	ons										

A derogation from regulations has been approved for this module which means that whilst the pass mark is 40%, each element of assessment requires a minimum mark of 30% for the module to be passed overall.

Office use only	
Initial approval June 16	
APSC approval of modification Enter date of approval	Version 1
Have any derogations received SQC approval?	Yes イ No □

Module Aims

To develop understanding and an overall appreciation of the knowledge and processes that lead to developing appropriate pneumatic systems and hydraulic systems to be used in industrial control and mechanical applications. In conjunction with modern machine shop practices and equipment.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1		KS1	KS6	
	Explain the operation principles of hydraulic and pneumatic systems and individual components.	KS3	KS9	
	, , , , , , , , , , , , , , , , , , ,	KS4/5	KS10	
2	Analyse the performances of hydraulic and pneumatic	KS1	KS6	
	systems and components.	KS3	KS9	
		KS4/5	KS10	
3	Demonstrate skills and knowledge in fault detection in	KS1	KS6	
	hydraulic and pneumatic system.	KS3	KS9	
		KS4	KS10	
4	Possess the ability to 'set up' machines and work pieces	KS1	KS9	
	ready for a particular machining process -typically either,	KS3	KS10	
	lathe turning, milling, CNC, 3D printing etc. and produce a finished machined product to given specifications.	KS4		
		KS6		

Assessment:

Assessment is 100% in-course. The assessment is based on a range of system analysis, design, practical lab-works/machining and investigations presented as a typically as two portfolios to cover 1-4. For example, there could be two major design exercises, or investigations, or system performance analyses; one for pneumatic systems and one for hydraulic systems or a mixture of both.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1-4	Portfolio	50%		2000
2	1-4	Portfolio	50%		2000

Learning and Teaching Strategies:

The module will be presented to students through a specified series of lectures assisted by notes given to students. Demonstrations will also be arranged to show the operation and set up of a pneumatic and hydraulic systems and the students are expected to carry out their own designs. Where possible, site visits to local industries will be arranged to demonstrate actual system operations or via video footage. In addition or in replacement of the assignments will in part be related to the student's workplace, if applicable. Safety and procedures will take place before undertaking machining, which will be delivered using tutorial sessions in the machine shop. Relevant videos will also be used to aid the learning process. Practical assignment exercises will be devised to enhance the students' learning

Syllabus outline:

- Fluid mechanics: Fluid pressure and measurement, Pascal's law, Temperature and measurement, Gas laws (Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's law, Combined and idea gas laws), Fluid flow, Flow measurement, transmission of power by pipelines, Fluid frictions;
- Hydraulics: Principle and operation of individual components within typical systems (pumps and pressure regulation, control valves, linear and rotary actuators, reservoirs, accumulators, heat exchangers, etc.). Principle and operation of complete hydraulic systems. The arrangement of the components to enable specific functions to be carried out. Hydraulic circuit design. System performance analysis;
- Pneumatics: Air compressors, air treatment and ancillaries. Principle and operation of individual components within typical systems (compressor and pressure regulation, Control valves, Actuators, I-P converters, P-I converters, etc.). Principle and operation of complete pneumatic systems. Pneumatic circuit design. Performance analyses for individual components and system operations; Fault detection: Failure modes and FMEA (failure mode and effect analysis).Measurements for fault detection. Fault detection instruments and built-in-test equipment. Fault detection process. Maintenance of hydraulic and pneumatic systems.

• Typical machining process which could include 3D printing, CNC machining, including programming methods and code (close links with CADCAM module), further machining, could include lathe setup and turning, screws and threads, milling, etc.

Bibliography:

Essential reading

Parr, A. (2011) Hydraulics and Pneumatics: A Technician's and Engineer's Guide, Butterworth-Heinemann

Other indicative reading

Singal, R.K. et al. (2009) Hydraulic Machines: Fluid Machinery, I K International Stacey, C. (1998) Practical Pneumatics, Newnes
Tom Lipton (2009) Metalworking, Industrial Press inc.
El Wakil, Sherif D. Processes and Design for Manufacturing 2nd ed., Boston: PWS
Publishing Company, 1998.
Ostwald, P.F. and J. Munoz, <u>Manufacturing Processes and Systems</u>, 9th ed., New York: John Wiley & Sons, 1997.
S.C. Black, et al., <u>Principles of Engineering Manufacture</u>, 3rd ed., London: Arnold, 1996